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ON THE THEORY OF MIGRATION AND 
COALESCENCE OF BUBBLES IN SOLIDS 

by 

E. E. Gruber 

ABSTRACT 

The surface-diffusion migration of an isolated pore 
ina solid is analyzed in detail. The resul ts , which are simi­
lar to ear l ie r resul ts , a re applied in analyses of bubble co­
alescence during postirradiation annealing. Coalescence is 
considered, first, as a result of random migration of bubbles, 
in which case the resul ts confirm ear l ier resul ts that the 
mean bubble radius should be proportional to (time)'''^, and 
second, as a resul t of biased migration of bubbles. In the 
latter case, the predicted mean radius increases linearly 
with t ime. In both cases , the bubble-size distribution is ca l ­
culated and used to predict the swelling of the solid, which is 
about 15% greater in the first case and up to 65% greater in 
the second case than predicted by approximate t reatments 
based on change in the mean bubble radius with t ime. 

I. INTRODUCTION 

Considerable interest has been shown recently in the subject of gas -
filled pores, or "bubbles," in solids. Although interest developed initially 
because of the swelling of nuclear fuel mater ia ls due to the presence of 
entrapped fission gases, increasing consideration is being given to bubbles 
as a means of studying certain basic propert ies of mater ia l s . This interest 
has been spurred by the demonstration by Barnes and Mazey' that helium 
bubbles can be observed in alpha-particle irradiated copper foils upon pulse 
heating in the electron microscope. Valuable information concerning the 
anisotropy of surface tension of solids under a very pure inert atmosphere 
can be obtained by observation of bubble shapes, which should be related 
to the equilibrium shape of a fixed volume of solid. The feasibility of this 
approach has been demonstrated by Nelson, Mazey, and Barnes.^ 

The present work is concerned with the relationship between surface 
diffusion and bubble migration and coalescence. Shewmon has shown that 
the observation by Barnes and Mazey' that small bubbles migrate in a ther ­
mal gradient with a velocity inversely proportional to the bubble radius in­
dicates that surface diffusion is the dominant t ransport mechanism, so that 





a s m a l l b u b b l e m o v e s p r i m a r i l y b y d i f f u s i o n of m e t a l a t o m s o v e r t h e i n n e r 

s u r f a c e of t h e b u b b l e . S h e w m o n h a s s u g g e s t e d t h e p o s s i b i l i t y of s t u d y i n g 

t h e r a t e of s p h e r o i d i z a t i o n of t w o b u b b l e s t h a t c o a l e s c e , i n c o n j u n c t i o n w i t h 

t h e a n a l y s i s of N i c h o l s , ' ' a s a m e a n s of d e t e r m i n i n g t h e s u r f a c e - d i f f u s i o n 

c o e f f i c i e n t . B e c a u s e of t h e r a p i d a p p r o a c h t o t h e e q u i l i b r i u m s h a p e f o r 

s m a l l b u b b l e s , t h e s u r f a c e - d i f f u s i o n c o e f f i c i e n t Dg s h o u l d b e m e a s u r a b l e a t 

l o w e r t e m p e r a t u r e s a n d o n n n o r e m a t e r i a l s t h a n o t h e r w i s e p o s s i b l e . 

T h e a p p r o a c h in t h e p r e s e n t a n a l y s i s i s t o c o n s i d e r t h e m i g r a t i o n a n d 

c o a l e s c e n c e t h a t r e s u l t u n d e r c e r t a i n i d e a l i z e d s i t u a t i o n s i n t h e h o p e t h a t 

e x p e r i m e n t a l o b s e r v a t i o n s of b u b b l e m i g r a t i o n a n d c o a l e s c e n c e u n d e r l a b ­

o r a t o r y c o n d i t i o n s c a n g i v e u s e f u l i n f o r m a t i o n c o n c e r n i n g t h e s u r f a c e -

d i f f u s i o n c o e f f i c i e n t a n d o t h e r m a t e r i a l p a r a m e t e r s . It i s a s s u m e d t h r o u g h o u t 

t h a t t h e g a s b e h a v e s i d e a l l y , t h a t t h e g a s p r e s s u r e i s b a l a n c e d b y s u r f a c e 

t e n s i o n , a n d t h a t r e - s o l u t i o n of t h e g a s d o e s n o t o c c u r . B e c a u s e of t h e n e g ­

l i g i b l y s m a l l i m p o r t a n c e of v e r y s m a l l b u b b l e s w i t h r e g a r d t o s w e l l i n g , d e ­

v i a t i o n s f r o m t h e a b o v e - a s s u m e d b e h a v i o r s h o u l d n o t b e a s i g n i f i c a n t s o u r c e 

of e r r o r . I t i s f u r t h e r a s s u m e d t h a t t h e g a s i s i n i t i a l l y p r e s e n t a s v e r y 

s m a l l b u b b l e s ( s o t h a t n u c l e a t i o n i s i g n o r e d ) , a n d t h a t c o a l e s c e n c e o c c u r s 

i n s t a n t a n e o u s l y u p o n c o l l i s i o n of t w o b u b b l e s . F i n a l l y , it i s a s s u m e d f o r t h e 

p r e s e n t a n a l y s i s t h a t t h e m a t r i x i s f r e e of d i s l o c a t i o n s a n d g r a i n b o u n d a r i e s 

a n d t h a t b u b b l e s d o n o t i n t e r a c t e x c e p t u p o n c o l l i s i o n . 

I I . P O R E M I G R A T I O N B Y S U R F A C E D I F F U S I O N 

S i n c e c o a l e s c e n c e i s r e g a r d e d i n t h i s a n a l y s i s a s e s s e n t i a l l y a c o l ­

l i s i o n p r o c e s s , t h e r e l a t i o n s f o r p o r e m i g r a t i o n a r e b a s i c t o t h e a n a l y s i s of 

c o a l e s c e n c e . T h e v e l o c i t y of a s p h e r i c a l p o r e m i g r a t i n g b y s u r f a c e d i f f u s i o n 

w i l l f i r s t b e c a l c u l a t e d b y c o n s i d e r i n g 

t h e d r i v i n g f o r c e a s a f o r c e o n t h e i n ­

d i v i d u a l a t o m s c o m p r i s i n g t h e p o r e 

s u r f a c e . T h i s f o r c e p e r a t o m w i l l t h e n 

b e r e l a t e d t o t h e e q u i v a l e n t f o r c e o n 

t h e p o r e , a f t e r w h i c h t h e r e s u l t s w i l l 

b e u s e d t o d e f i n e a p o r e - d i f f u s i o n 

c o e f f i c i e n t , D b . 

I t i s a s s u m e d t h a t t h e p o r e i s 

i n i t i a l l y s p h e r i c a l w i t h r a d i u s r a n d 

i s c e n t e r e d a t t h e o r i g i n , a s s h o w n i n 

F i g . 1. If a f o r c e 2 1^ e x e r t e d i n t h e 

39587 p o s i t i v e x - d i r e c t i o n o n e a c h m o b i l e 

1. Schematic Representation of a a t o m i n t h e s u r f a c e , t h e p o r e w i l l 
Migrating Pore in a Solid m i g r a t e i n t h e o p p o s i t e d i r e c t i o n w i t h 

Fig. 





a velocity .v, as though the pore were driven by an equivalent force F . The 
flux js ac ross a unit length on the surface is given by the product of the 
surface density V of atoms involved in surface diffusion and the average 
drift velocity V, which is given by the Nernst-Einste in relation.^ This flux 

Dg vDg 
is =• vV = v — is = Yf ^ ^^"^ ^• 

where Dg is the surface-diffusion coefficient, kT has the usual meaning, and 
fs = f sin 9 is the magnitude of the component of the force i_ paral lel to the 
surface. 

The rate at which a surface element moves normal to the surface is 
equal to the rate of volume change per unit area; this change is given by the 
product of atomic volume Q. and the negative divergence of the flux. The unit 
of a rea is taken as a str ip of surface at constant 9 of width r A9, because of 
the rotational symmetry about the x-axis.. The flux leaving this str ip by 
crossing the line at 9 is given by the product of flux per unit length and the 
line length, 

J- = -YY^ sin^ e. 

The flux entering the s t r ip at 9 + AO is 

27TrvD„f 
j+ = ^ ^ s i n ^ ( e +A9). 

Since the a rea of the str ip is 27Tr̂  sin 9 AO for small AS, the speed of a 
surface element normal to the surface is 

dp . (j- - j+) n _ QvDsi d(sin^ 9) 
dt ' A9^o 27rr^ sin 9 A9 " "rkT sin 9 d9 

where dp/dt is the t ime rate of change in length of the vector from the origin. 
Substituting for the derivative and taking Q.V = ^^^ = 0.89 lao for the fee 
lattice, where ao is the interatomic distance, we obtain 

dp 1.78aoDsf ^ / , \ 
dt rkT 

It can be shown from this equation that the change in p with t is such that 
the pore remains spherical and t rans la tes along the x-axis . The translat ion 
velocity can be obtained by setting 9 = 0 in Equation (l) to give 

_ _1.78aoDs (2) 
rkT 





T h i s r e s u l t i s in c l o s e a g r e e m e n t wi th the r e s u l t ob ta ined by G r e e n ­
wood and Spe igh t by a d i f f e r en t and s o m e w h a t a p p r o x i m a t e t r e a t m e n t , and 
is e q u i v a l e n t to the e x p r e s s i o n ob t a ined by Shewmon^ by an a l t e r n a t e , a p p r o x ­
i m a t e t r ea tnnen t . 

The a t o m i c d r i v i n g f o r c e i_ c a n be r e l a t e d to the equ iva l en t f o r c e _F 
on the p o r e by c o n s i d e r i n g the w o r k done by the fo rce F in mov ing the p o r e 
a d i s t a n c e i . T h i s w o r k ( F i , w h e r e F is the m a g n i t u d e of the f o r c e F) i s 
e q u i v a l e n t to the w o r k done by the f o r c e i_ in nnoving an equ iva l en t n u m b e r 
(-|- Trr / n ) of a t o m s a d i s t a n c e I in the oppos i t e d i r e c t i o n . It fol lows tha t 

f = -(3fi/47Tr^) F , (3) 

w h e r e the nninus s ign is i nc luded b e c a u s e the f o r c e s ac t in oppos i t e d i r e c ­
t ions . F o r the fee l a t t i c e , Q = a o / v 2 , so tha t s u b s t i t u t i o n for f f rom 
Equa t ion (3) into E q u a t i o n (2) g ive s 

0-301a^Ds 

r^kT F = kT (4) 

The N e r n s t - E i n s t e i n r e l a t i o n h a s b e e n u s e d in the l a s t s t e p to define an 
equ iva l en t v o l u m e - d i f f u s i o n coef f ic ien t D^ for the s u r f a c e - d i f f u s i o n m i g r a ­
t ion of the b u b b l e . 

Db 0.301D= a „ / r ) (5) 

Th i s r e l a t i o n d i f f e r s only s l i gh t ly in the n u m e r i c a l coef f ic ien t f rom the 
r e l a t i o n ob t a ined by G r e e n w o o d and S p e i g h t ' by an a l t e r n a t e m e t h o d . 

III. R A N D O M - M I G R A T I O N B U B B L E C O A L E S C E N C E 

A. F o r m u l a t i o n 

It i s a s s u m e d in the p r e s e n t c a s e tha t c o a l e s c e n c e fol lows bubble 
c o l l i s i o n s r e s u l t i n g f r o m r a n d o m m i g r a t i o n of b u b b l e s in an inf in i te , p e r f e c t 
c r y s t a l . A c l o s e ana logy e x i s t s b e t w e e n th i s p r o b l e m and tha t of co l lo id 
c o a g u l a t i o n a s t r e a t e d by C h a n d r a s e k h a r , ' who g ive s for the n u m b e r of 
c o l l i s i o n s A F y of co l lo id p a r t i c l e s in t i m e ,ut 

AFij = 47TDijRijFiFj 1 + 
R iL 

(TTDi^t) 17? At. (6) 

In the c a s e of bubb le c o a l e s c e n c e , AFj ; i s the n u m b e r of c o a l e s c e n c e s 
b e t w e e n i and j b u b b l e s in t i m e At, w h e r e i t i s c o n v e n i e n t to a s s o c i a t e 
i and j w i th p a r t i c u l a r v a l u e s of n i , the n u m b e r of g a s atonns in a bubb le 





of radius r j . Djj is the appropriate diffusion coefficient, shown by Chan-
drasekhar to be given by D^ + Dj, Ry is the sum of the bubble radii rj + r j , 
and Fi represents the concentration (number per unit volume) of bubbles 
containing ni gas atoms each. If the sum of the radii of the bubbles in 
question is smal ler than the mean distance travelled by the two bubbles 
relat ive to one another, the second term in the brackets in Equation (6) can 
be neglected (as was done by Chandrasekhar). Equation (6) can then be 
written in t e rms of the definition of Db [Equation (5)], 

AFij = 1.2047TajDgFiFj(ri+rj)(ri-nrJ' ') At. (7) 

B. Approximate Treatment 

It will be seen that the bubble-size distribution function F(ni, t) can 
be obtained from Equation (7) by the use of finite-difference methods with 
the electronic digital computer. It will be informative, however, to consider 
first an approximate solution. If the bubble-size distribution is charac te r ­
ized by a simplified distribution of N bubbles, each with radius r i . Equa­
tion (7) can be simplified by substituting for rj = ri and Fi = Fj = N. Then 
the decrease in Fi , the total number of bubbles that contain ni gas atoms each 
in time At, is given by 

AF = 2AFii = 9.6327Ta^DsN2rr^At, (8) 

since two bubbles disappear with each collision. 

Barnes has shown that, according to our assumptions, r i is related 
to ni by the expression^ 

r? = (3kT/87T7) ni, (9) 

where 7 is the surface tension of the solid. Since each bubble formed by 
coalescence contains 2ni gas atoms, it follows that the radius of each newly 
formed bubble is v 2 r i . For a total concentration of m gas atonns per unit 
volume, the number of bubbles of radius r i before coalescence is 

.,., m 3nnkT ,, „, 
^ i = l ^ = 8 ^ ' (^°) 

where Equation (9) has been used to substitute for ni in t e rms of r i . A 
direct calculation of the new mean radius after AFii collisions gives for 
small AFii the change in mean radius , 

Ar = | ( y 2 - l ) ( A F / F i ) r i . (U) 





Substitution for AF from Equation (8) and for Fi from Equation (10) gives the 
resul t , upon passing to the linnit and integrating from r = rg » 0 at t = 0 to 
r at t, 

r= = 3.74mkTa^Dst/7. (12) 

For comparison, Speight' obtained the result 

r^ = r^ + 2.6a%fzbkTt exp(-Qs/kT)/Tr7a 

by summation of a geometric se r ies of pairwise coalescence t imes. In this 
equation, a is the mean atomic spacing, v^ is the Debye frequency, Qs is the 
activation energy for surface diffusion, f is an entropy factor involved in the 
diffusion jump, b is the atomic concentration of gas in the sample, z is a 
numerical factor (~4), and the remaining symbols were defined ear l ie r . 
Upon substitution for Dg = \a.lvol exp(-Qs/kT), a = fl'^', and m = h/O,, and 
with the approximation that VQ is negligible with respect to r, this equation 
reduces to 

r^ = 6.6mkTajDst/7, 

which differs from Equation (12) only in the numerical constant. The resul t 
given by Equation (12) is therefore not new. However, it provides a con­
venient means of considering one of the most cr i t ical objections to this type 
of solution, the use of a mean radius in characterizing the distribution 
function. 

C. Determination of the Size-distribution Function 

The mean radius is defined in t e rms of the distribution function by 

CO CO 

r(t) = ^ r i F ( n i , t ) / ^ F(ni, t). 
1 = 1 1 = 1 

where Equation (9) has been used to substitute for r i , and the moment of 
order k at time t is defined by 

00 

<nk> = X "i'F(ni, t). (14) 
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The volume increase , or swelling, relative to unit initial volume is given 
by 

AV = - 7 T X r?F(n. , t ) = 0.173(kT/7) ' / ' <n3/2>, (15) 

where, again. Equations (9) and (14) have been used to express the resul ts 
in t e rms of the appropriate moment of the distribution function. These 
moments can be accurately calculated only if the entire distribution function 
is known. 

The distribution function F(n, t) can be obtained from Equation (7) by 
digi tal-computer calculations based on finite-difference methods. Substitu­
tion for rj from Equation (9) in Equation (7) gives 

AF.j = 91.7a^D^FiFj(7/kT) '^ ' (np+nj/^)(nr2 + nr2) At. (16) 

It is preferable to normalize the function F(n, t) by dividing each 
value Fi by m, so that the resulting function f(n, t), which represents the 
number of bubbles per gas atom per unit volume, is independent of the con­
centration m. The resul t can be written 

Afij = fifj(n}/^ + nj/2)(n[Hnj2) AT, (17) 

where T is a dimensionless parameter , which we shall term the "reduced 
t ime," defined by 

T = 91.7a^Dsm(7/kT) '^S. (18) 

Equation (17) forms a convenient basis for the finite-difference calculations 
because the resul t s a re not explicit functions of the various pa ramete r s . 

In principle, the finite-difference method is used to calculate the 
change in an assumed distribution function f(n, 0) in a very short "time 
step" AT. This change is used to determine the new distribution, and the 
procedure is repeated until the desired number of time steps have been 
completed. The reduced time T is given by the sum of the time steps. The 
assumed distribution in this case was such that all bubbles were initially 
monatomic; that i s , 

f(ni, 0) = 1 for i = 1, 

= 0 for i > 1. 
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Since each collision resul ts in the disappearance of one i and one j bubble 
and the formation of one (i+j) bubble, the distribution at reduced time 
T + A T is found from the relations 

f(ni,T + AT) = f(ni,T) - £ Af.jj (19a) 

J - i 

f(nj,T + AT) = f (n j ,T)- Y, ^hy (19b) 

f(ni+j,T + AT) = f(ni+j,T) + Y' Afij. (19c) 
i.j 

The l imits have been chosen to prevent double counting, and the sum in 
Equation (19c) is over all values of i and j such that i s j and n^^- = 
ni + nj. 

The method of using these relations in a digital-computer program 
was relatively straightforward; 200 values of fi were stored in memory and 
connparisons were made according to Equation (17) to calculate the change 
Afjj/AT. The calculated changes were stored in memory for each value of 
i, and a value of AT was calculated such that the largest change Afj would 
be some predetermined fraction of the largest value of fi. This fraction 
was taken in most cases as 0.05, which gave a reasonable compromise be­
tween the excessive computer time required for a smal ler fraction and the 
excessive inaccuracy that would resul t for a larger fraction. The calculated 
value of AT was added to the time memory and was used to calculate the 
actual changes Af̂ , which were then added to the previous values of fi. The 
calculations were repeated until no further information could be gained. 
The total number of steps used was over 400, with a resulting range in T of 
more than six powers of ten. A doubling procedure was used to increase the 
range of n while retaining only 200 values of i in memory; that is , ni = i 
was used until izoo became significant; then ni = 2i was used, and the doubling 
of the increment An was repeated as necessary . 

After each set of five time steps, the distribution function was 
printed out and several calculations were made. The important resul ts to 
be obtained from the calculations a re the mean bubble radius r and the 
relat ive swelling of the sample AV as functions of the reduced time T. These 
pa rame te r s a re defined in te rms of moments of the function F(n, t) by Equa­
tions (13) and (15). The first moment <n > is also of interest as a check on 
the accuracy of the calculation, since <n '> is the total number of gas atoms 
per unit initial volume and should be independent of time and equal to m. 
The k*-" moment, defined by Equation (14), is given in t e rms of the computer 
resu l t s by the approximate expression 
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<n'^> = mAn ^ nj^fi. (20) 

The following charac ter i s t ic values of n were also calculated: 

n, = i^f = «n'/^>/<n°»'; 

n2 = H = <n '> /<n°>; 

2 / 3 2 / 3 
n3 = (n^^^)"^ = «n^/^>/<n<>>)''^ 

(21a) 

(21b) 

(21c) 

These charac ter i s t ic values give the appropriate values of n to be used in 
calculation of the mean radius, the mean number of atoms per bubble, and 
the mean bubble volume. The differences in these values give an indication 
of the e r r o r inherent in the ear l ier approximate t reatments , which must 
assume all charac ter i s t ic values to be the same. The rates of change of 
these values with T were also calculated. 

D. Results 

As T increases , it is expected that the coalescence of smaller bubbles 
to form larger ones will cause the distribution function to diminish with time 

for small n and to increase 
with time for large n. The 
area under the curve should 
also decrease, since the total 
number of bubbles decreases 
with t ime. This expected be­
havior was observed,as shown 
in Fig. 2 by the calculated 
functions for three values of T. 
The calculated distribution in 
each case was fairly snnooth, 
although some oscillation was 
evident; fi was slightly greater 
for even values of i than for 
odd values. However, this 
small oscillation did not sig­
nificantly influence the r e ­
sults, as shownby the fact that 
after 400 time steps the cal ­
culated total number of gas 
atoms had dropped only to 
0.99998m. 
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Fig. 2. Size-distribution Functions at 
Different Times for Random-
migration Bubble Coalescence 
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P l o t s of the v a r i o u s p a r a m e t e r s and s u c c e s s i v e d i s t r i b u t i o n c u r v e s 
showed tha t a f t e r a v e r y s h o r t t i m e the shape of the d i s t r i b u t i o n changed in 
a de f in i t e m a n n e r and tha t l o g - l o g p lo t s of the p a r a m e t e r s a s funct ions of 
T y i e l d e d s t r a i g h t l i n e s , a s i n d i c a t e d in F i g . 3. The c a l c u l a t e d s l o p e s of 
t h e s e p l o t s v a r i e d wi th in about 0.5% of 2 / 5 for n j , n j , and n3. The s a m e 
a c c u r a c y w a s found for the o the r s l o p e s , which w e r e about - 2 / 5 for <n ' '> , 
- 1 / 5 for < n ' / ^ > , 0 for < n ' > , and l / S for <n^/^>. 

0.01 0.1 1.0 10 

REDUCED TIME . T 

40449 

Fig. 3. Dependence of Bubble Distribution Parameters on Time 

T h e s a m e r e s u l t s w o u l d b e o b t a i n e d if t h e d i s t r i b u t i o n f u n c t i o n w e r e 

g i v e n b y 

F ( n , t ) = m T - V 5 Z i ( u ) , (22) 

w h e r e u = n T " ^ ^ . I t i s t h u s p o s s i b l e t o s t a n d a r d i z e t h e d i s t r i b u t i o n c u r v e 

a s s h o w n i n F i g . 4 . T h e t h e o r e t i c a l d i s t r i b u t i o n f u n c t i o n F ( n , t ) c a n b e c a l ­

c u l a t e d f o r a n y s e t of e x p e r i m e n t a l p a r a m e t e r s f r o m t h i s c u r v e b y m u l t i ­

p l y i n g t h e v a l u e s o n t h e o r d i n a t e b y m T " ^ ^ a n d t h o s e o n t h e a b s c i s s a b y T ^ ^ . 

Fig. 4 

Size-distribution Function 
for Random Coalescence 
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The pa ramete r s can be expressed from these resul ts as functions of 
T, and by substitution for T from Equation (l8), it can be shown that 

r = 1.30[mkTajDst/7]^ , (23a) 

and 

AV = 0.75(mkT/7)[mkTa^Dst/7]'^'. {23b) 

As an example of the resul ts predicted by this analysis, consider the 
case of copper at 1000°K with m = 10 °̂ helium atoms per cm^, 7 = 1.7 x 
10^ ergs/cm^, ao = 2.55 A, and Dg = 10"^ c m y s e c . The t e rm in brackets is 
3.3 X 10"'^t (t in seconds). For t = 3 x lO' sec, or about one month, the p re ­
dicted values are r = 42 A and AV = 0.006%. 

The limited effect of random coalescence emphasizes the need for 
more quantitative consideration of other mechanisms of swelling, such as 
grain-boundary sweeping, ' dislocation effects, thermal gradients and 
other external effects that lead to unidirectional forces on bubbles, and per­
haps bubble interact ions. 

Although the computer approach to the problem is not of great value 
in this part icular case, the resul ts clearly show that it is a valid approach to 
the problem. Fur ther , it can be shown that the approximate solution gives 
resul t s identical to Equations (23a) and (23b) except that the numerical co­
efficient for AV is reduced to 0.65. The e r ro r in AV due to the use of the 
approximate solution is about 15% in this case and can be nnuch worse in 
other cases . Approximate t reatments are more tenuous for the case of a 
uniform driving force, and some other approach such as that used here is 
necessa ry for a quantitative, theoretical t reatment. This problem is con­
sidered in the next section. 

IV. BIASED-MIGRATION BUBBLE COALESCENCE 

A. Fornnulation 

If a uniform driving force that tends to nnove all bubbles in the same 
direction is present, it is not possible to character ize the distribution of 
bubble s izes by a mean radius r, since then all bubbles would migrate with 
the same speed and in the same direction, and no coalescence beyond that 
considered in the preceding section would occur. It is therefore necessary 
to consider the manner in which the bubble size var ies in the sample. Co­
alescence occurs when a smaller bubble overtakes a larger, and hence 
slower, bubble. The collision volume is the volume of a cylinder of radius 
r i + Tz and of length (vi-Vj) At, since only the difference in speed leads to 
coll is ions. The probability of collision of a particular small bubble con­
taining ni gas atoms with a larger bubble containing nj gas atoms is given 
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by the product of collision volume and number of n; bubbles per unit volume, 
for a sufficiently small collision volume, so that the totalnumber of collisions 
between ni and nj bubbles in unit volume in time At is 

AGij = 7TGiGj(ri + r j ) ^v i -v j ) At, (24) 

where the distribution of bubble sizes is given by the function G(n, t) and we 
have written Gi for G(ni, t). Equation (24) can be written in t e rms of ni by 
substituting for vi from Equation (2) and for r^ from Equation (9). In t e rms 
of the "normalized" distribution function g(n, t), obtained by dividing the 
function G(n, t) by m, the number of gas atoms per unit volume, we obtain, 
after some simplification. 

A' !ij = gigj(n| /^+nj/^) '(n[ ' /^-nj ' /^)AT', (25) 

where T' = - 1.93maoDsft(7kT) is a dimensionless "reduced t ime. " (Note 
that f is negative in this formulation.) Equation (25) is analogous to Equa­
tion (17) for the case of random-migrat ion coalescence and has been used in 
the same manner to obtain the distribution function g(n, t) by finite-difference 
methods. 

B. Approximate Treatment 

It is interesting to consider first an approximate approach similar to 
those considered previously. Although as stated above the distribution cannot 
be character ized by a mean radius, it can be characterized by two radii such 
that 

r i • d - q ) , (26) 

and 

Tz = r ( l + q ) , (27) 

where r is the mean radius and q is a number less than one, which gives a 
measure of the variance of the distribution g(n, t). If the distribution is 
approximated by Ni bubbles of radius rj and N^ bubbles of radius TZ, where 
NJ = N^ = J-N, then Equation (24) can be simplified to give, for the number 
of collisions in time At, 

3.567TaoDsf N^rq , „, 

Each collision resul t s in the loss of one bubble of each size and the formation 
of a la rger bubble of radius r j . F rom conservation of gas atoms and Equa­
tion (9), r j is given by 

r3 = ir'i+rlf" = V T d + q^)'^' r. 
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Calculation of the new mean radius after a small number of collisions, and 
subtraction of the original mean radius, gives for the change in mean radius 

Ar = [ T F d + q ^ ) ' ^ ' - 1 ] ( A N / N ) r. (29) 

Since the concentration of gas atoms m is given by the sum Njni + Njn^ = 
•i-N(ni+n2), it follows from Equation (9) that 

3mkT 1 . . . 

Substituting in Equation (29) for AN from Equation (28) and for N from Equa­
tion (30), passing to the limit and integrating from r = ro = 0 at t = 0 to r • 
at t, we obtain, for the mean radius as a function of time, 

r S- -L34[V2(l+q^)" '^- l] ^ H^isHi!^. (31) 
1 - q 7 

Again the negative sign enters because f is taken negative. It is assumed in 
the integration that q is independent of r. Although the appropriate value of 
q is unknown, the more detailed calculations that follow indicate that q = I /2 . 
This value in Equation (3l) gives 

r = -0.4maoDsft/7. (31a) 

It follows from the approximate relation for swelling, as given by Barnes, 
that 

AV = ^ ^ ^ S -0.2(m/7) 'kTaoDsft. (31b) 

This equation is based on the approximation that all bubbles have radius r. 
If we use instead the better approximation, that half the bubbles have radius 
ri , the other half r j , then it can be shown that a correction factor given by 
(l +3q^)/(l +q^) must be inserted in Equation (31b). The value of this factor 
for q = 1/2 is 1.4, so that the predicted swelling is given by 

AV = Y l ^ ^ ^ - -0-28(m/7)^kTaoDsft. (31c) 

It will be seen from the resul ts of the next section that this estimate is 
still about 15% too low. 

C. Determination of the Size-distribution Function 

To obtain a more accurate estimate of the behavior of bubbles in a 
force field, we re turn to Equation (25) and consider the finite-difference 
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a p p r o a c h . The m e t h o d of c a l c u l a t i o n is s i m i l a r to tha t u s e d in the c a s e of 
r a n d o m - m i g r a t i o n c o a l e s c e n c e . I n s t e a d of a s i n g u l a r input, the i n i t i a l 
d i s t r i b u t i o n w a s t a k e n to be the r e s u l t g iven by the p r e v i o u s c a l c u l a t i o n 
a f t e r a v e r y s h o r t a n n e a l i n g t i m e . T h i s i n i t i a l d i s t r i b u t i o n w a s u s e d b e ­
c a u s e the s i n g u l a r input u s e d p r e v i o u s l y would not p e r m i t c o a l e s c e n c e , 

s ince Equa t ion (25) p r e d i c t s no 
c o a l e s c e n c e for e q u a l - s i z e d 
b u b b l e s ; f u r t h e r , s o m e r a n d o m -
m i g r a t i o n c o a l e s c e n c e would 
n e c e s s a r i l y o c c u r , and in i t i a l ly 
would d o m i n a t e the c o a l e s c e n c e . 
P r e l i m i n a r y c l a c u l a t i o n s b a s e d 
on Equa t ion (25) showed tha t the 
r e q u i r e d r a n g e in n i n c r e a s e d 
so r a p i d l y tha t the doubling 
p r o c e d u r e u s e d in the p r e v i o u s 
c a s e was i n a d e q u a t e . The d i s ­
t r i b u t i o n c u r v e s g iven in F i g . 5 
i nd i ca t e tha t the d i s t r i b u t i o n a t 
any t i m e t d e c r e a s e s v e r y 
s lowly with i n c r e a s i n g n. It 
was noted , h o w e v e r , tha t plot t ing 
g(n, T ' ) VS log n y i e lded a c u r v e 
r e s e m b l i n g a n o r m a l d i s t r i b u ­
t ion (Fig . 6). T h i s c u r v e 

d e c r e a s e s f a i r l y s h a r p l y to z e r o at both l a r g e and s m a l l v a l u e s of log n. 
B e c a u s e of t h i s b e h a v i o r n i was t a k e n a s e x p ( i / 1 0 ) , and i was t a k e n f r o m 
1 to 125. T h i s a p p r o a c h u s e s 
v a l u e s of n i t ha t a r e u n i f o r m l y 
s p a c e d on a l o g a r i t h m i c s c a l e . g 

To i n c r e a s e the r a n g e in n, it o 
w a s n e c e s s a r y only to add v a l - £ 
u e s a t the h igh end; when t h i s § 
b e c a m e n e c e s s a r y . It w a s p o s - g " 
s ib le to d r o p v a l u e s a t the low S > 
end b e c a u s e g(n, T') w a s e s s e n - g 
t i a l l y z e r o for the s m a l l v a l u e s uj ~ 
of n. " 
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5. Size-distribution Functions at Different Times 
for Biased-migration Bubble Coalescence 

T h i s a p p r o a c h l e a d s t o m 
s o m e diff icul ty and i n a c c u r a c y " 
b e c a u s e of the p r o b l e m of a s ­
s ign ing the c o r r e c t s u b s c r i p t 42290 
to the b u b b l e s f o r m e d by c o ­
a l e s c e n c e . The m e t h o d u s e d 
w a s to t ake " d i f f e r e n t i a l s , " 

NUMBER OF GAS ATOMS PER BUBBLE, n 

Fig. 6. Semilogarithmic Plot of Distribution 
Function for Biased-migration 
Coalescence 





Ani = n i / l O , 

wh ich fo l lows f rom the def in i t ion of ni a s an exponen t i a l , and to p a i r t h e s e 
i n c r e m e n t s wi th the a p p r o p r i a t e v a l u e s of n i . E a c h t i m e i and j b u b b l e s 
w e r e c o m p a r e d , the a p p r o p r i a t e va lue of k for the newly f o r m e d bubble 
w a s c a l c u l a t e d . Slight i n a c c u r a c y e n t e r s in th i s a p p r o a c h b e c a u s e i, j , and 
k deno te a r a n g e in n, and not d i s c r e t e v a l u e s . The c a l c u l a t i o n s w e r e then 
c a r r i e d out a s in the p r e v i o u s c a s e . 

The m o m e n t s and c h a r a c t e r i s t i c v a l u e s c a l c u l a t e d for the p r e c e d i n g 
c a s e w e r e a l s o c a l c u l a t e d for t h i s c a s e . Equa t ion (20) was s l igh t ly modi f ied , 
s i nce in t h i s c a s e An i s a function of i, and only 125 v a l u e s of i w e r e 
c o n s i d e r e d . 

D. R e s u l t s 

The c a l c u l a t e d d i s t r i b u t i o n s in th i s c a s e w e r e e x t r e m e l y smooth , with 
no o s c i l l a t i o n a s d e t e c t e d in the p r e c e d i n g c a s e , a l though the r e s u l t s w e r e not 
a s a c c u r a t e . The c a l c u l a t e d n u m b e r of a t o m s , which should be cons t an t , 
v a r i e d f r o m m t h r o u g h a m a x i m u m of 1.11m at T ' = 8.5, then d e c r e a s e d 
s lowly to 1.014m at T ' = 568, the h ighes t va lue c o n s i d e r e d . The n u m b e r of 
t i m e s t e p s u s e d w a s 1300, which is c o n s i d e r a b l y m o r e than in the p r e v i o u s 
c a s e . 

The r e s u l t s a r e g e n e r a l l y c o n s i s t e n t with the a p p r o x i m a t e c a l c u l a t i o n 
g iven a b o v e . T h a t i s , the p r e d i c t e d m e a n r a d i u s and vo lume change a r e v e r y 
n e a r l y l i n e a r with t i m e , and the c h a r a c t e r i s t i c v a l u e s of n a r e p r o p o r t i o n a l 

to the s q u a r e of T ' . At T ' = 568, the 
c a l c u l a t e d s lopes a r e 0.977 for the m e a n 
r a d i u s and 0.945 for the vo lume change . 
The d i f f e rence r e s u l t s p r i m a r i l y f rom 
the e r r o r in m. T h i s e r r o r a f fec ts the 
m e a n r a d i u s c a l c u l a t i o n l e s s b e c a u s e 
the m e a n r a d i u s i s g iven by the r a t i o of 
two m o m e n t s [see Equa t ion (13)], so tha t 
the e r r o r in m is ef fec t ively c a n c e l l e d . 
The r e s u l t s a r e g iven in F i g . 7, in which 
the r a t i o of m o m e n t s < n ' ^>/< n > and 
the m o m e n t <n ' > a r e p lo t ted a s func­
t i ons of T ' . T h e s e r e s u l t s can be e x ­
p r e s s e d a p p r o x i m a t e l y by the equa t i ons 
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Dependence of Bubble-distribution Pa­
rameters on Time. The mean radius 
r is a function of the ratio of moments 
<n-' '^>/<n°>, and the swelling AV 
is a function of the moment <n^/2>. 

< n ' / ^ > / < n ' ' > = 1 5 + 0 . 6 0 T ' ( 3 2 a ) 

a n d 

( l / m ) < n ^ > = 35 + 1.00 T ' , ( 3 2 b ) 

w h i c h c o r r e s p o n d t o t h e l i n e s d r a w n i n 

F i g . 7. 
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The calculated slopes for the character is t ic values of n are approxi­
mately 1.94. If, as in the preceding case, it is assumed that the distribution 
approaches a standard shape, with decaying annplitude and spreading range, 
then it can be shown from the above resul ts that the distribution must be of 
the form 

G(n, t) = mT'-*Z2{u'), (33) 

where u' = n/T'^. Calculations of the standard frequency curve Zzin^) for 
severa l values of T ' give the resul ts summarized in Fig. 8. It appears that 
the distribution tends toward a standard shape with increasing time, but not 
nearly as rapidly as in the preceding case. 
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Fig. 8. "Standardized" Size-distribution Curves 
for Biased-migration Coalescence 

The p r e d i c t e d v a l u e s for the nnean r a d i u s and v o l u m e change , f r o m 
E q u a t i o n s (13), ( l5 ) , (24), and (3 l ) , a r e 

-0 .40maoDsf t /Y , (34a) 

and 

AV = - 0 . 3 3 m ^ k T a o D s f t / 7 ^ (34b) 

w h e r e the c o n s t a n t t e r m s in Equa t ion (32) have b e e n o m i t t e d . C o m p a r i s o n 
of E q u a t i o n s (34a) and (30) l e a d s to the c o n c l u s i o n m e n t i o n e d p r e v i o u s l y that 
q = 1/2. Al though t h i s va lue of q b r i n g s the a p p r o x i m a t e r e s u l t s into a g r e e ­
m e n t for t he m e a n r a d i u s , the e r r o r in AV is s t i l l s ign i f ican t [-65% c o m ­
p a r e d to E q u a t i o n (31b)] b e c a u s e of the r e l a t i v e l y wide v a r i a t i o n in bubble 
s i z e c o m p a r e d to the p r e v i o u s c a s e . 

The fo rce on the a t o m s can be r e l a t e d to a s u r f a c e - d i f f u s i o n hea t of 
t r a n s p o r t , Q,%, by c o m p a r i n g the flux r e l a t i o n u s e d in the d e r i v a t i o n of 





Equation (1) to the flux relation given by Denbigh'^ for diffusion in a thermal 
gradient. The surface density V is considered constant, so that the resul t is^ 

^ - - ^ - (35) 

Although no experimental data a re available for the heat of t ransport for 
surface diffusion, an order-of-magnitude estimate of Q* ~10 kcal/mole will 
suffice to give a semiquantitative measure of the resul ts of coalescence to 
be expected according to the present theory. For a thermal gradient of 
lO' °C/cm, the resul t s for copper at 1000°K with m = 10^° a t o m s / c m ' a re , 
from Equations (34a) and (34b), 

r ~ ° / 
Y = 0.4 A/sf 

and 

"Y^ = 2.7 X 10"' %/sec. 

o 

The resul t s for an annealing time of 1 hr a re r ~ 1400 A and AV =; 10%. The 
effects of changing m, T, or VT a r e apparent from Equations (34) and (35). 

V. DISCUSSION OF RESULTS 

Equations have been derived for the speed of pore migration in an 
energy gradient and for pore diffusivity under the assumption that a small 
pore migra tes by surface diffusion. Other migration mechanisnns, such as 
evaporation and condensation at the leading and trailing surfaces, '^ may be 
expected to be significant in larger bubbles. 

The resulting equations, which generally confirm earl ier and usually 
more approximate resu l t s , have been applied in analyses of bubble coales­
cence upon post irradiat ion annealing for two highly idealized cases . In 
these two cases (coalescence resulting from random migration and from 
biased migrat ion in an energy gradient), several assumptions and approxi­
mations have been made. The basic assumptions a re that the bubbles con­
tain ideal gas at a p r e s su re balanced by the surface tension of the solid, 
that they a re present initially as very small, randomly distributed bubbles 
in a perfect crysta l , and that coalescence occurs instantaneously when two 
bubbles meet. We have ignored the problems of bubble nucleation, in te rac­
tions with dislocations or grain boundaries, migration by other mechanisms, 
and equilibration of the gas p ressu re and surface tension after coalescence, 
although many of these considerations have been discussed previously. '" ' ' ' ' '^ 





Despite these l imitations, several resul ts are significant. F i r s t , 
swelling is not likely to be significant if it occurs only by random migra ­
tion and coalescence of bubbles in large-grained mater ia l , but swelling can 
be greatly enhanced if some external effect can influence bubble migration. 
A s imilar conclusion was reached by Loomis and Pracht; recrystal l izat ion 
was shown to be a necessary prerequisi te for pronounced swelling in their 
experimental investigation of alpha uranium.'" 

Second, the importance of considering the entire distribution of bub­
ble s izes , ra ther than only the mean radius, has been emphasized, and it 
has been shown that the mean bubble size gives only a semiquantitative 
measure of the swelling. 

In addition, the fact that the calculated distributions approach a 
standard form should be very useful in future work, for it implies that the 
approximate relation for swelling in te rms of the mean radius [Equa­
tion (31b)] is co r rec t except for a proportionality constant. The assumption 
of a standard distribution may also lead to simpler t reatments of problems 
such as that t reated here . Such treatments would be very useful in consid­
eration of other problems, such as coalescence of bubbles on dislocations ' 
or grain boundaries. 

In conclusion, it should be noted that the finite-difference method 
developed here is a powerful method that can be applied not only to more 
real is t ic cases of bubble coalescence, but to a variety of other problems, 
such as colloid coagulation.^ 
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